Bike City

1 000 000 people

1 000 000 bicycles

traditional bikes

max speed: 48 km/h

no very steep going up ramps (2,5%) the going down ones can be much more slanted (15%)

city friendly to the environment and users

5 min 37,5s connection between functions9 min 7,5s connection between the furthest part of the city

2.1.1.1 Bike City – Advantages & Disadvantages

Advantages

- -no pollution
- -healthy
- -cheap
- -very flexible
- -almost everybody can use it
- useable in almost every terrain
- small demands on urban space
- silet in operation

Disadvantages

- -tiring
- -low capacity
- -no weather protection
- -not very safe

2.1.1.2 Bike City – Transport mode variations

traditional bicycle1 persom, single-track

sociable bicycle 2 people, single-track

conference bicycle 7 people, multi-track

recumbent bicycle
1 person, single-track

tandem bicycle2 people, single-track

bicycle for disabled 1 people, multi-track

2.1.1.3 Bike City – Performance: storage

2.1.1.3 Bike City – Performance : speed

48 km/h flat going up 25 km/h going down 70 km/h

max race speed

70 km/h flat 34 km/h going up going down 110 km/h

5 min – 4 km

5 min = 4 km

10 km

15 km

10 min – 8 km 15 min – 12 km

BICYCLE passengers: 1 64 I

max speed: 48 km/h

BICYCLE WITH A TRAILER

passengers: 1 + 2 children

105 l, 45 kg

max speed: 24 km/h

5 min – 2 km 10 min – 4 km

15 min – 6 km

2.1.1.3 Bike City – Performance : dimensions

capacity: 1 person / vehicle

max speed: 48 km/h 25 km/h average speed: acceleration to max speed: 11 s turning radius at max. speed: 34 m

5 min distance: 4 km

fuel type: human fuel consumption: 500 kcal/h

vehicle:

length 1,8 m width 0,6 m height 1 m volume 1,08 m³

2.1.1.4 Bike City – Buffer zone

with a rider in move:

length 6 m (assumption) width 1,6 m (assumption)

2,5 m height 8 m^3 volume

2.1.1.5 Bike City – Pathway limitations: turning radius

turning radius for different types of bikes

with max superelevation: 12%

turning radius for traditional bike

2.1.1.5 Bike City – Pathway limitations: inclination

2.1.1.6 Bike City – Pathway surface studies

Sand, gravel

- + cheap
- + eco-friendly
- easy loss of control
- lots of energy needed

Soil

- +cheap
- + eco-friendly
- can become uneven
- slippery when wet

Asphalt

- + rough one is the best for wet surface
- + even surface
- + easier pedalling
- hot weather: surface can become hot enough to allow tires to sink into the surface
- production: environment pollution

Bad things on surface for biking:

- –potholes: (damage to bicycle wheels and rider)
- -small objects (tire destruction, loss of control)
- ripples or wavings (difficult control, speed decrease)
- surface made of slabs (tend to shift during riding on them)
- no big changing the level of riding eg. curbs

2.1.1.7 Bike City – Additional program typologies: parking

STORAGE AREA

- bike parking lot
 - big multileveled parking lot
 - bicycle stand
- canopied or not
- closed (even guarded) or not
- outside, inside

	6 BIKES			50 BIKES		
2	parking	access	total	parking	access	total
typical ≡	10,4 m ²	8,32 m ²	18, 72 m²	76,4 m ²	61,12 m ²	137,52 m ²
typical ≡≡	11,8 m ²	9,44 m ²	21,24 m ²	77,8 m ²	62,24 m ²	140,04 m ²
folded =	10,08 m²	10,08 m ²	20,16 m ²	59,36 m²	59,36 m ²	118,72 m²

up to 9

10 and more

2.1.2.1 Bike City – Proximity and fragmentation studies

1 function, connected with housing

works!

2x function, connected most usable

each duplicated is connected big problem: housing - industry & agriculture

1 function, all connected

19: ok

4: 0,2-0,4 km more

5: 0,7-1 km more

as the previous one + industry & agriculture divided

each industry is close to each agriculture

2x function, all connected

1 of each same 2 is reachable not everything, especially the same function

as the previous one + health & agriculture divided

- 8 agriculture
- 4 health, industry
- 2 housing, shopping, office, education, leisure

2.1.2.1 Bike City – Proximity and fragmentation studies

as the previous one + housing divided

- 8 agriculture
- 4 housing, health, industry
- 2 shopping, office, education, leisure

most useable functions close to each other

- 16 agriculture
- 8 industry, office, leisure, health
- 4 housing, shopping, education

as the previous one + housing & shopping divided

- 8 agriculture
- 4 housing, shopping, health, education, industry
- 2 office, leisure

as discs

reachable in about 5 min 37,5 s + traveling within a function the biggest in industry – 2 min 15 s x2 = 4 min 30 s

10 min 7,5 s

as the previous one + housing & shopping divided

- 16 agriculture
- 8 industry
- 4 housing, shopping, health, education
- 2 office, leisure

1?f 2.1.2.2 Bike City – Connection Hierarchy

Priority connections:

most used ones

housing - office

housing - education

housing - shopping

all the housings (8) are connected

every part of function is connected with 2 parts of other functions exception: agriculture, industry – connected with 1 part of other functions (to make them more flexible in location)

each part of a specific function is connected with 2 other from the same function exception: agriculture, industry – connected with 1 part of the same function

2.1.2.3 Bike City – Density disc

2.1.2.4 Bike City – Additional programme

resting points

resting poing every 1km – every 1 min 15s

parking

space needed for parking out of all space in function:

 -housing
 1,88%

 -office
 13,36%

 -education
 4,25%

 -shopping
 6,8 %

 -leisure
 0,16%

 -industry
 0,002%

 -health care
 6,74%

 -agriculture
 0,005%

average: 4,15%

t?f 2.1.2.5 Bike City – Conclusion

based on:

most useable - the closest (housing & office / education / shopping)

division

8 – housing, office, education, shopping, leisure, health care

16 - agriculture, industry

536 different types of connections

centres of functoins are reachable in about **5 min 37,5 s** + traveling within a function

the longest – between industry: 1 min 45 s x 2 = 3 min 30 s 9 min 7,5 s

housing - office: 6 min 10s housing - education: 6 min 12s housing - shopping: 6 min 10s

2.1.3 Bike City – Transport city model

city r = 4km

5,5 km (6 min 52,5 s) between the centres of the furthest housings

3 and 8 floors housing:

industry: 10 floors agriculture: 3 floors central: 20 floors other functions: 7 floors

1.2 2.1.3 Bike City – Transport city model

package

housing – 3 and 8 floors r = 450m

office, education, shopping, health care – 7 floors r = 550-610m (width 60m)

leisure – 7 floors r = 610-920m (width 310m)

between the furthest part: 1,8 km - 3 min 37s up (1 km) – 2min 37s flat (0,8 km) – 1 min

2.1.3.1.3 Bike City – Pathways capacities and dimensions

1 person / vehicle

max speed buffer zone: 1 x 6 m (assumption)

1 LANE

max speed => 133 bikes / 1 min

max speed => 665 bikes / 5 min

2.1.3.1.1 Bike City – Merging and weaving zones: changing layers

changing layer

up 2,5 % h=2,8 m, a=112 m down 15 % h=2,8 m, a=17 m

purpose:

changing layer

2.1.3.1.1 Bike City – Merging and weaving zones: changing layers

2.1.3.1.1 Bike City – Merging and weaving zones: smart road

purpose:

changing road direction according to the need

usage of going down slope (increase of speed)

2.1.3.1.1 Bike City – Merging and weaving zones: turning back

TURNING BACK

up 2,5 % h=2,8 m, a=112 m -> 0,52 rotation down 15 % h=2,8 m, a=18,7 m -> 0,09 rotation

purpose:

going straight turning back changing layer

2.1.3.1.1 Bike City – Merging and weaving zones: turning back

2.1.3.1.2 Bike City – Crossing typologies

SPAGHETTI JUNCTION

4 directions, 8 layers,

4 major lanes + 2 lanes to change direction up 2,5 %, down 15 %

purpose:

going straight turning

height of the crossing: 29,6 m

up: 2 min 50,5s, down: 1 min 1s -> 3 min 51,5 s

2.1.3.1.4 Bike City – Positioning of additional program: resting point

resting point

4x toilet

3x bench

11x bicycle stand

1x service

1x first-aid kit

11 x 9,2 m

+ stopping area

access: side road adjusted to max speed

2.1.3.1.4 Bike City-Positioning of additional program:multistorey parking

multistorey parking

applied to a building 3-decker bicycle lift

waiting time from storage: 20s to storage: 5,5s

2.1.3.1.5 Bike City – Time expenditures

acceleration time: 11 s deceleration time: 4,5 s time to storage: 5,5 s time from storage: 20 s

2.1.4 Bike City – Final image

2.1.4 Bike City – Final image

